
Symmetric Functions and Macdonald Polynomials Seminar Outline

Spring 2023

� If a proof uses material from a different lecture than yours, please remind the audience what the

corresponding statement is by writing it out on the blackboard.

� If you don’t understand notation(we use a lot of references) or have any questions, please email

me ccl2166@columbia.edu even if we have already met before your talk.

� If you find a proof hard to understand or find it annoying, you can instead give examples demon-

strating the theorem or lemma instead of presenting the proof.

� Material in parenthesis are optional and should only be covered if there’s time. Also “until

Theorem A” means that you end by covering Theorem A.

1 Symmetric Functions

(1) Generating Functions

(a) Follow [1, Section 1, 2, 4].

� For Section 2, only cover Section 2.5, the Product Rule.

(b) Follow [8, Section 1, 3, 4].

� Skip Section 3 part (5).

(2) Monomial and Elementary Symmetric Functions

(a) Follow [5, Chapter 1.2].

(b) Follow [5, Chapter 2.1].

� For Example 2.7, prove Proposition 2.10 first and then go back and write e31 as a linear

combination of monomial symmetric functions.

� Skip Page 37 and go directly to Proposition 2.18 instead.

(3) Complete Homogeneous and Power Sum Symmetric Functions

(a) Follow [5, Chapter 2.2].

(a) Skip combinatorial proof of 2.24, Corollary 2.26.

(b) Follow [5, Chapter 2.3].

� Skip Corollary 2.32.

(c) Cover Exercise 2.17 (a) and Exercise 2.27 in [5] (Ask Cailan for notes).

(4) q−analogs

(a) Define q−numbers (Equation (3.2) on page 75) and q−analogues and then prove that the

generating function for inversions is a q−analog for n! [12, Theorem 3.2.1].

(b) Start on page 77 of [12] and go until Theorem 3.2.4.
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Section 1 Symmetric Functions

(c) Cover [4, Section 6.4].

(5) Stirling Numbers and Evaluation of Symmetric Functions

(a) Cover [5, Proposition 3.1] in Chapter 3.1 only.

(b) Cover [5, Chapter 3.2].

� Skip Proposition 3.5, 3.6.

(c) Cover [5, Chapter 3.3].

� Skip Proposition 3.17.

(d) Cover [5, Chapter 3.4] starting at Proposition 3.27.

(6) Schur Polynomials

(a) Cover [5, Chapter 4.1] up to Definition 4.11.

� Skip to page 86 and state Proposition 4.15.

� Start again on page 87 and follow to the end of the section.

(b) Cover [5, Chapter 4.2] up to Proposition 4.28 on page 96.

(7) Jacobi-Trudi identities

(a) State [5, Theorem 6.2] and then show the examples on page 158, 159 starting with “When

we study our answer...” State [5, Theorem 6.10] and show the examples on the top of page

172.

(b) Follow the proof of Jacobi-Trudi from [3, Proposition 4.2].

(c) Follow [5, Chapter 6.3] up to the proof of Proposition 6.20.

� Prove Eq (3.4) before proving proposition 6.19.

� Apply ω to the first Jacobi-Trudi identity to get the second.

(8) The Robinson-Schensted (RS) Algorithm

(a) Follow [13, Chapter 3.1-3.3].

(b) Follow [13, Chapter 3.5] up to the statement of Theorem 3.5.3.

(c) State [13, Theorem 3.6.6].

(9) The Hall Inner Product

(a) Follow [5, Chapter 7.1]

� End on the definition of δλµ on page 191 and start again in the middle of page 193 at ,

“There is a tool...”

� Just state Proposition 7.3.

(b) Follow [5, Chapter 7.2]

(c) Follow [5, Chapter 7.3].

� Just state Proposition 7.17.

(10) The Robinson-Schensted-Knuth (RSK) Algorithm and Cauchy’s Formula

(a) Follow [14, Section 7.1] ending with the statement of Theorem 7.11.5.
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Section 1 Symmetric Functions

(b) Follow [14, Chapter 7.2]

� Stop after the end of the proof of Theorem 7.12.1.

� Cover Corollary 7.12.5 on page 324.

(c) State [14, Theorem 7.13.1]. Present your favorite corollaries from 7.13.6 to 7.13.9 on page

330.

(11) Pieri and Murnaghan–Nakayama Rules

(a) Cover [5, Chapter 9.1].

� Stop at the end of page 251 and then do Example 9.5. Prove Theorem 9.7 and do

examples.

(b) Cover [5, Chapter 9.2].

� Stop in the middle of page 259 where it says, ”is a horizontal strip of length n− k.”

� State Theorem 9.17 and then continue on page 266 near the top where it says, ”We can

apply...”

(12) The Hook-length Formula and the Littlewood-Richardson Rule

(a) Let fλ be the number of semistandard Young tableaux of shape λ. Cover [12, Chapter 3.10]

ending on the top of page 125 after listing all possible tableaux.

(b) Prove the Hook-length formula following [2, Chapter 4.6].

� The formula for Fµ(N) on page 82 is special in it’s own right. It’s called the Hook-

Content Formula and gives a formula for the number of semistandard young tableaux

of shape µ with fillings from the set {1, 2, . . . , N}. Do more examples after the proof of

Hook-length.

(c) The Littlewood-Richardson coefficients cλµ ν are defined to be the coefficients

sµ · sν =
∑
λ

cλµ νsλ

Now follow [11, pages 3-8].

� Skip anything involving sλ\µ.

� Skip S3 symmetry on page 3.

(13) HyperGeometric Series

(a) Follow [9] ending before Theorem 6 on page 6.

(14) Plane Partitions

(a) Define Plane Partitions following the beginning of the corresponding wikipedia article ending

with, ”This formula may be viewed as the 2-dimensional analogue of Euler’s product formula

for the number of integer partitions of n.”

(b) Define B(r, s, t) following [3, page 13] and state [3, Theorem 1.3].

(c) Follow [3, page 130] starting at ”Using Schur Functions” until page 133.
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Section 2 Macdonald Polynomials

(d) Prove that ∑
π∈B(r,s,t)

q|π| =

r∏
i=1

t∏
j=1

1− qi+j+s−1

1− qi+j−1
=

r∏
i=1

t∏
j=1

s∏
j=1

1− qi+j+k−1

1− qi+j+k−2

and now by letting r, s, t → ∞ above, show that

∞∑
n=0

PL(n)xn =
∞∏
ℓ=1

1

(1− xℓ)ℓ

(Ask Cailan for notes)

2 Macdonald Polynomials

(15) The Original Macdonald Polynomials

(a) Cover [10, Chapter 1.11]. Eq (9.3) in [2] gives an example.

� Ignore anything mentioning zonal, Jack, Hall-Littlewood polynomials.

� Stop in the middle of page 15 after Pλ satisfy (11.1) and (11.2).

(b) Cover [10, Chapter 1.12].

� Stop at the end of Eq (12.6)

(16) Combinatorial formula for Hµ(zn; q, t)

(a) Follow [2, Chapter 9.5] ending at the top of page 157 where it says, “as s3+(q+t)s21+qts111”

� Ignore the part on the bottom of page 156 on quasisymmetric monomial basis and mono-

mial symmetric functions.

� Illustrate the theorem of Haglund, Haiman, Loehr Eq (9.23) by computing H3 and/or

H111 and checking your answers in [2, page 205].

(b) State Proposition 9.2 in [7]. Do some computations when µ = (2, 2) for some λ and check

your answer by looking at H22 in [2, page 205].

(17) Macdonald Constant Term Conjecture and q−Hypergeometric Series

(a) Follow [15] pages 5-11 and page 25-26.

(b) Follow [6] Sections 1-12.

� Skip Section 3.

� Section 6 is optional as we have seen these theorems multiple times already.

� Equation (7.8) is Euler’s Pentagonal number theorem and 3n2 + n/2 are pentagonal

numbers (they form pentagons).

� Skip Sections 8-11.

� (Section 17 is famous if you have time for it).

Also DO NOT omit q from F (a, b; t : q).

(18) Plethysm and the Modified Macdonald Polynomials
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