Symmetric Functions and Macdonald Polynomials Seminar Outline

Spring 2023

- If a proof uses material from a different lecture than yours, please remind the audience what the corresponding statement is by writing it out on the blackboard.
- If you don't understand notation(we use a lot of references) or have any questions, please email me ccl2166@columbia.edu even if we have already met before your talk.
- If you find a proof hard to understand or find it annoying, you can instead give examples demonstrating the theorem or lemma instead of presenting the proof.
- Material in parenthesis are optional and should only be covered if there's time. Also "until Theorem A" means that you end by covering Theorem A.

1 Symmetric Functions

(1) Generating Functions
(a) Follow [1, Section 1, 2, 4].

- For Section 2, only cover Section 2.5, the Product Rule.
(b) Follow [8, Section 1, 3, 4].
- Skip Section 3 part (5).
(2) Monomial and Elementary Symmetric Functions
(a) Follow [5, Chapter 1.2].
(b) Follow [5, Chapter 2.1].
- For Example 2.7, prove Proposition 2.10 first and then go back and write e_{31} as a linear combination of monomial symmetric functions.
- Skip Page 37 and go directly to Proposition 2.18 instead.

(3) Complete Homogeneous and Power Sum Symmetric Functions

(a) Follow [5, Chapter 2.2].
(a) Skip combinatorial proof of 2.24, Corollary 2.26.
(b) Follow [5, Chapter 2.3].

- Skip Corollary 2.32.
(c) Cover Exercise 2.17 (a) and Exercise 2.27 in [5] (Ask Cailan for notes).
(4) q-analogs
(a) Define q-numbers (Equation (3.2) on page 75) and q-analogues and then prove that the generating function for inversions is a q-analog for n ! [12, Theorem 3.2.1].
(b) Start on page 77 of [12] and go until Theorem 3.2.4.
(c) Cover [4, Section 6.4].
(5) Stirling Numbers and Evaluation of Symmetric Functions
(a) Cover [5, Proposition 3.1] in Chapter 3.1 only.
(b) Cover [5, Chapter 3.2].
- Skip Proposition 3.5, 3.6.
(c) Cover [5, Chapter 3.3].
- Skip Proposition 3.17.
(d) Cover [5, Chapter 3.4] starting at Proposition 3.27.
(6) Schur Polynomials
(a) Cover [5, Chapter 4.1] up to Definition 4.11.
- Skip to page 86 and state Proposition 4.15.
- Start again on page 87 and follow to the end of the section.
(b) Cover [5, Chapter 4.2] up to Proposition 4.28 on page 96.
(7) Jacobi-Trudi identities
(a) State [5, Theorem 6.2] and then show the examples on page 158, 159 starting with "When we study our answer..." State [5, Theorem 6.10] and show the examples on the top of page 172.
(b) Follow the proof of Jacobi-Trudi from [3, Proposition 4.2].
(c) Follow [5, Chapter 6.3] up to the proof of Proposition 6.20.
- Prove Eq (3.4) before proving proposition 6.19.
- Apply ω to the first Jacobi-Trudi identity to get the second.
(8) The Robinson-Schensted (RS) Algorithm
(a) Follow [13, Chapter 3.1-3.3].
(b) Follow [13, Chapter 3.5] up to the statement of Theorem 3.5.3.
(c) State [13, Theorem 3.6.6].
(9) The Hall Inner Product
(a) Follow [5, Chapter 7.1]
- End on the definition of $\delta_{\lambda \mu}$ on page 191 and start again in the middle of page 193 at, "There is a tool..."
- Just state Proposition 7.3.
(b) Follow [5, Chapter 7.2]
(c) Follow [5, Chapter 7.3].
- Just state Proposition 7.17.
(10) The Robinson-Schensted-Knuth (RSK) Algorithm and Cauchy's Formula
(a) Follow [14, Section 7.1] ending with the statement of Theorem 7.11.5.
(b) Follow [14, Chapter 7.2]
- Stop after the end of the proof of Theorem 7.12.1.
- Cover Corollary 7.12.5 on page 324.
(c) State [14, Theorem 7.13.1]. Present your favorite corollaries from 7.13.6 to 7.13.9 on page 330.

(11) Pieri and Murnaghan-Nakayama Rules

(a) Cover [5, Chapter 9.1].

- Stop at the end of page 251 and then do Example 9.5. Prove Theorem 9.7 and do examples.
(b) Cover [5, Chapter 9.2].
- Stop in the middle of page 259 where it says, "is a horizontal strip of length $n-k$."
- State Theorem 9.17 and then continue on page 266 near the top where it says, "We can apply..."

(12) The Hook-length Formula and the Littlewood-Richardson Rule

(a) Let f^{λ} be the number of semistandard Young tableaux of shape λ. Cover [12, Chapter 3.10] ending on the top of page 125 after listing all possible tableaux.
(b) Prove the Hook-length formula following [2, Chapter 4.6].

- The formula for $F_{\mu}(N)$ on page 82 is special in it's own right. It's called the HookContent Formula and gives a formula for the number of semistandard young tableaux of shape μ with fillings from the set $\{1,2, \ldots, N\}$. Do more examples after the proof of Hook-length.
(c) The Littlewood-Richardson coefficients $c_{\mu \nu}^{\lambda}$ are defined to be the coefficients

$$
s_{\mu} \cdot s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

Now follow [11, pages 3-8].

- Skip anything involving $s_{\lambda \backslash \mu}$.
- Skip S_{3} symmetry on page 3 .

(13) HyperGeometric Series

(a) Follow [9] ending before Theorem 6 on page 6 .
(14) Plane Partitions
(a) Define Plane Partitions following the beginning of the corresponding wikipedia article ending with, "This formula may be viewed as the 2-dimensional analogue of Euler's product formula for the number of integer partitions of n."
(b) Define $\mathcal{B}(r, s, t)$ following [3, page 13] and state [3, Theorem 1.3].
(c) Follow [3, page 130] starting at "Using Schur Functions" until page 133.
(d) Prove that

$$
\sum_{\pi \in \mathcal{B}(r, s, t)} q^{|\pi|}=\prod_{i=1}^{r} \prod_{j=1}^{t} \frac{1-q^{i+j+s-1}}{1-q^{i+j-1}}=\prod_{i=1}^{r} \prod_{j=1}^{t} \prod_{j=1}^{s} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

and now by letting $r, s, t \rightarrow \infty$ above, show that

$$
\sum_{n=0}^{\infty} \mathrm{PL}(n) x^{n}=\prod_{\ell=1}^{\infty} \frac{1}{\left(1-x^{\ell}\right)^{\ell}}
$$

(Ask Cailan for notes)

2 Macdonald Polynomials

(15) The Original Macdonald Polynomials

(a) Cover [10, Chapter 1.11]. Eq (9.3) in [2] gives an example.

- Ignore anything mentioning zonal, Jack, Hall-Littlewood polynomials.
- Stop in the middle of page 15 after P_{λ} satisfy (11.1) and (11.2).
(b) Cover [10, Chapter 1.12].
- Stop at the end of Eq (12.6)
(16) Combinatorial formula for $H_{\mu}\left(z_{n} ; q, t\right)$
(a) Follow [2, Chapter 9.5] ending at the top of page 157 where it says, "as $s_{3}+(q+t) s_{21}+q t s_{111}$ "
- Ignore the part on the bottom of page 156 on quasisymmetric monomial basis and monomial symmetric functions.
- Illustrate the theorem of Haglund, Haiman, Loehr Eq (9.23) by computing H_{3} and/or H_{111} and checking your answers in [2, page 205].
(b) State Proposition 9.2 in [7]. Do some computations when $\mu=(2,2)$ for some λ and check your answer by looking at H_{22} in [2, page 205].
(17) Macdonald Constant Term Conjecture and q-Hypergeometric Series
(a) Follow [15] pages 5-11 and page 25-26.
(b) Follow [6] Sections 1-12.
- Skip Section 3.
- Section 6 is optional as we have seen these theorems multiple times already.
- Equation (7.8) is Euler's Pentagonal number theorem and $3 n^{2}+n / 2$ are pentagonal numbers (they form pentagons).
- Skip Sections 8-11.
- (Section 17 is famous if you have time for it).

Also DO NOT omit q from $F(a, b ; t: q)$.
(18) Plethysm and the Modified Macdonald Polynomials

References

[1] R. R. Albert Meyer. Generating Functions. https://www.math.cmu.edu/~1ohp/docs/math/ 2011-228/mit-ocw-generating-func.pdf.
[2] F. Bergeron. Algebraic combinatorics and coinvariant spaces. CMS Treatises in Mathematics. Canadian Mathematical Society, 2009, pp. viii +221 .
[3] D. M. Bressoud. Proofs and confirmations: The story of the alternating sign matrix conjecture. MAA Spectrum. Mathematical Association of America, 1999, pp. xvi+274.
[4] P. Cameron. Advanced Combinatorics. http://www-groups.mcs.st-andrews.ac.uk/~pjc/ Teaching/MT5821/1/16.pdf.
[5] E. S. Egge. An introduction to symmetric functions and their combinatorics. Vol. 91. Student Mathematical Library. American Mathematical Society, Providence, RI, [2019] © 2019, pp. xiii+342.
[6] N. J. Fine. q-hypergeometric series. Look in Courseworks.
[7] J. Haglund, M. Haiman, and N. Loehr. "A combinatorial formula for Macdonald polynomials". In: J. Amer. Math. Soc. 18.3 (2005), pp. 735-761.
[8] M. Haiman. Notes on partitions and their generating functions. https://math.berkeley.edu/ \sim mhaiman/math172-spring10/partitions.pdf.
[9] Hypergeometric functions. https://homepage.tudelft.nl/11r49/documents/wi4006/hyper. pdf.
[10] I. G. Macdonald. Symmetric functions and orthogonal polynomials. Vol. 12. University Lecture Series. Dean Jacqueline B. Lewis Memorial Lectures presented at Rutgers University, New Brunswick, NJ. American Mathematical Society, Providence, RI, 1998, pp. xvi+53.
[11] A. Postnikov. 18.217 Lecture 27. https://math . mit. edu / ~apost/courses / 18. 217_2020/ lectures/lecture27_18217.pdf.
[12] B. E. Sagan. Combinatorics: the art of counting. Vol. 210. Graduate Studies in Mathematics. https://users.math.msu.edu/users/bsagan/Books/Aoc/final.pdf. American Mathematical Society, Providence, RI, [2020] © 2020 , pp. xix +304 .
[13] B. E. Sagan. The symmetric group. Second. Vol. 203. Graduate Texts in Mathematics. Representations, combinatorial algorithms, and symmetric functions. Springer-Verlag, New York, 2001, pp. xvi +238 .
[14] R. P. Stanley. Enumerative combinatorics. Vol. 2. Vol. 62. Cambridge Studies in Advanced Mathematics. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge University Press, Cambridge, 1999, pp. xii +581 .
[15] O. Warnaar. Macdonald polynomials made easy. https://people.smp.uq.edu.au/OleWarnaar/ talks/Macdonald.pdf.

